EconPapers    
Economics at your fingertips  
 

Sustainable Load-Balancing Scheme for Inter-Sensor Convergence Processing of Routing Cooperation Topology

Hyun-Woo Kim, Jong Hyuk Park and Young-Sik Jeong
Additional contact information
Hyun-Woo Kim: Department of Multimedia Engineering, Dongguk University, Seoul 04620, Korea
Jong Hyuk Park: Department of Computer Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea
Young-Sik Jeong: Department of Multimedia Engineering, Dongguk University, Seoul 04620, Korea

Sustainability, 2016, vol. 8, issue 5, 1-10

Abstract: Recent advancements in Information Technology (IT) have sparked the creation of numerous and diverse types of devices and services. Manual data collection measurement methods have been automated through the use of various wireless or wired sensors. Single sensor devices are included in smart devices such as smartphones. Data transmission is critical for big data collected from sensor nodes, such as Mobile Sensor Nodes (MSNs), where sensors move dynamically according to sensor mobility, or Fixed Sensor Nodes (FSNs), where sensor locations are decided by the users. False data transfer processing of big data results in topology lifespan reduction and data transfer delays. Hence, a variety of simulators and diverse load-balancing algorithms have been developed as protocol verification tools for topology lifespan maximization and effective data transfer processing. However, those previously developed simulators have limited functions, such as an event function for a specific sensor or a battery consumption rate test for sensor deployment. Moreover, since the previous load-balancing algorithms consider only the general traffic distribution and the number of connected nodes without considering the current topology condition, the sustainable load-balancing technique that takes into account the battery consumption rate of the dispersed sensor nodes is required. Therefore, this paper proposes the Sustainable Load-balancing Scheme (SLS), which maximizes the overall topology lifespan through effective and sustainable load-balancing of data transfer among the sensors. SLS is capable of maintaining an effective topology as it considers both the battery consumption rate of the sensors and the data transfer delay.

Keywords: sustainable load-balancing; cloud computing; convergence processing; green communication (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/8/5/436/pdf (application/pdf)
https://www.mdpi.com/2071-1050/8/5/436/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:8:y:2016:i:5:p:436-:d:69336

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jsusta:v:8:y:2016:i:5:p:436-:d:69336