EconPapers    
Economics at your fingertips  
 

Evaluation of the Life Cycle Greenhouse Gas Emissions from Hydroelectricity Generation Systems

Akhil Kadiyala, Raghava Kommalapati and Ziaul Huque
Additional contact information
Akhil Kadiyala: Center for Energy & Environmental Sustainability, Prairie View A&M University, Prairie View, TX 77446, USA
Raghava Kommalapati: Center for Energy & Environmental Sustainability, Prairie View A&M University, Prairie View, TX 77446, USA
Ziaul Huque: Center for Energy & Environmental Sustainability, Prairie View A&M University, Prairie View, TX 77446, USA

Sustainability, 2016, vol. 8, issue 6, 1-14

Abstract: This study evaluated the life cycle greenhouse gas (GHG) emissions from different hydroelectricity generation systems by first performing a comprehensive review of the hydroelectricity generation system life cycle assessment (LCA) studies and then subsequent computation of statistical metrics to quantify the life cycle GHG emissions (expressed in grams of carbon dioxide equivalent per kilowatt hour, gCO 2 e/kWh). A categorization index (with unique category codes, formatted as “facility type-electric power generation capacity”) was developed and used in this study to evaluate the life cycle GHG emissions from the reviewed hydroelectricity generation systems. The unique category codes were labeled by integrating the names of the two hydro power sub-classifications, i.e. , the facility type (impoundment (I), diversion (D), pumped storage (PS), miscellaneous hydropower works (MHPW)) and the electric power generation capacity (micro (µ), small (S), large (L)). The characterized hydroelectricity generation systems were statistically evaluated to determine the reduction in corresponding life cycle GHG emissions. A total of eight unique categorization codes (I-S, I-L, D-µ, D-S, D-L, PS-L, MHPW-µ, MHPW-S) were designated to the 19 hydroelectricity generation LCA studies (representing 178 hydropower cases) using the proposed categorization index. The mean life cycle GHG emissions resulting from the use of I-S (N = 24), I-L (N = 8), D-µ (N = 3), D-S (N = 133), D-L (N = 3), PS-L (N = 3), MHPW-µ (N = 3), and MHPW-S (N = 1) hydroelectricity generation systems are 21.05 gCO 2 e/kWh, 40.63 gCO 2 e/kWh, 47.82 gCO 2 e/kWh, 27.18 gCO 2 e/kWh, 3.45 gCO 2 e/kWh, 256.63 gCO 2 e/kWh, 19.73 gCO 2 e/kWh, and 2.78 gCO 2 e/kWh, respectively. D-L hydroelectricity generation systems produced the minimum life cycle GHGs (considering the hydroelectricity generation system categories with a representation of at least two cases).

Keywords: life cycle assessment; greenhouse gas emissions; hydro energy; impoundment; diversion; pumped storage; miscellaneous hydropower works; electricity generation (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)

Downloads: (external link)
https://www.mdpi.com/2071-1050/8/6/539/pdf (application/pdf)
https://www.mdpi.com/2071-1050/8/6/539/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:8:y:2016:i:6:p:539-:d:71655

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jsusta:v:8:y:2016:i:6:p:539-:d:71655