EconPapers    
Economics at your fingertips  
 

Modeling the Movement of Septic Water Chloride through a Soil Profile

Shawkat Kochary, Tom Byl and Bahzad Noori
Additional contact information
Shawkat Kochary: Department of Civil Engineering, University of Duhok, Duhok City 42001, Kurdistan Region, Iraq
Tom Byl: Department of Agriculture Sciences, Tennessee State University, Nashville, TN 37209, USA
Bahzad Noori: Department of Civil Engineering, University of Duhok, Duhok City 42001, Kurdistan Region, Iraq

Sustainability, 2017, vol. 9, issue 4, 1-14

Abstract: The purpose of this study was to investigate the movement of chloride through a vadose zone located under failed and non-regulated septic tanks of Duhok city, Kurdistan of Iraq, potentially contaminating its groundwater. A physical vadose model (PVM) of a vertical flow direction was built in the laboratory to represent the city soil profile. The size of the PVM was 210 × 122 × 9.7 cm (height, width, and depth). Preliminary soil tests were conducted to better represent the lithology of study area. The PVM was then packed with regional silt clay soil, after modifying its texture, using an innovative packing procedure to preserve natural soil density and porosity. The model was run for a period of three months with newly collected septic water (black water from a septic tank) as an exclusive source of contaminants. Water samples from eight vertically arranged portals representing 12.5, 37.5, 62.5, 87.5, 112.5, 137.5, 162.5, and 187.5 cm levels in the subsurface soil profile were collected on a daily basis and analyzed weekly. Logistic regression and logarithmic models were developed to spatially predict the movement of chloride ions at different sampling depths in the soil profile until the system had reached the equivalent chloride concentration of the septic water or had stabilized. There was a good agreement between the physical model and the statistical models, however each model had its strengths and weaknesses. This study demonstrated that there is a potential for septic water to reach the water table within a 2–3 weeks period. Dilution and dispersion appear to play important roles in the fate and transport of septic water. This study has the potential to help the local authorities predict percolation rates and establish strategies for groundwater management in order to protect the public health.

Keywords: chloride ion; septic tank; groundwater; physical vadose model (PVM); logistic models; logarithmic models (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/9/4/501/pdf (application/pdf)
https://www.mdpi.com/2071-1050/9/4/501/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:9:y:2017:i:4:p:501-:d:94214

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jsusta:v:9:y:2017:i:4:p:501-:d:94214