Soil Respiration Response to Long-Term Freezing Saline Water Irrigation with Plastic Mulching in Coastal Saline Plain
Xiaoguang Li,
Kai Guo,
Xiaohui Feng,
Haiman Liu and
Xiaojing Liu
Additional contact information
Xiaoguang Li: Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
Kai Guo: Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
Xiaohui Feng: Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
Haiman Liu: Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
Xiaojing Liu: Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
Sustainability, 2017, vol. 9, issue 4, 1-15
Abstract:
The technology of freezing saline water irrigation (FSWI) with plastic mulching has been regarded as an effective way to reclaim the highly saline soil in coastal plains, which enabled the growth of crops in heavy saline soil that was not suitable for any crop growth before. However, after long-term treatment with FSWI, the microenvironment of the soil has been found to be affected by the growth of crops, which will directly influence the balance of soil carbon emissions. In this study, the characteristics of soil respiration in a typical saline field (planted with cotton) under four treatments (FSWI in Winter with plastic mulching, FSWI + Mulch; FSWI in Winter without plastic mulching, FSWI; plastic mulching in Spring without FSWI, mulch; no plastic mulching and no FSWI, CK) were investigated between June and November from 2015 to 2016. The results suggested that the soil surface temperature was an important factor that affected the soil respiration rate in each treatment during the growth period of cotton. FSWI + Mulch can reduce the soil surface salinity to 0.4% during the seedling stage, which increased the survival rate and the abundance of bacteria, fungi, and actinomycetes in the cotton field and subsequently increased soil respiration. By examining the effects of FWSI and mulching on soil respiration and its influencing factors, this study provides practical and theoretical insight into the sustainable development of agriculture in coastal saline plains.
Keywords: soil respiration; freezing saline water irrigation; plastic mulching; coastal saline plain; Q 10 (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/9/4/621/pdf (application/pdf)
https://www.mdpi.com/2071-1050/9/4/621/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:9:y:2017:i:4:p:621-:d:95969
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().