EconPapers    
Economics at your fingertips  
 

A District Approach to Building Renovation for the Integral Energy Redevelopment of Existing Residential Areas

Mira Conci and Jens Schneider
Additional contact information
Mira Conci: Institute for Structural Mechanics and Design, Technische Universität Darmstadt, Darmstadt 64287, Germany
Jens Schneider: Institute for Structural Mechanics and Design, Technische Universität Darmstadt, Darmstadt 64287, Germany

Sustainability, 2017, vol. 9, issue 5, 1-12

Abstract: Building energy renovation quotas are not currently being met due to unfavorable conditions such as complex building regulations, limited investment incentives, historical preservation priorities, and technical limitations. The traditional strategy has been to incrementally lower the energy consumption of the building stock, instead of raising the efficiency of the energy supply through a broader use of renewable sources. This strategy requires an integral redefinition of the approach to energy building renovations. The joint project SWIVT elaborates on a district redevelopment strategy that combines a reduction in the energy demand of existing buildings and their physical interconnection within a local micro-grid and heating network. The district is equipped with energy generation and distribution technologies as well as hybrid thermal and electrical energy storage systems, steered by an optimizing energy management controller. This strategy is explored through three scenarios designed for an existing residential area in Darmstadt, Germany, and benchmarked against measured data. Presented findings show that a total primary energy balance at least 30% lower than that of a standard building renovation can be achieved by a cluster of buildings with different thermal qualities and connected energy generation, conversion, and storage systems, with only minimal physical intervention to existing buildings.

Keywords: building renovation; primary energy demand; smart district; micro grid; district heating; energy storage; renewable energy generation; energy management; energy efficiency (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/2071-1050/9/5/747/pdf (application/pdf)
https://www.mdpi.com/2071-1050/9/5/747/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:9:y:2017:i:5:p:747-:d:97536

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jsusta:v:9:y:2017:i:5:p:747-:d:97536