Experimental Analysis of the Effect of Geometry and Façade Materials on Urban District’s Equivalent Albedo
Elena Morini,
Beatrice Castellani,
Andrea Presciutti,
Elisabetta Anderini,
Mirko Filipponi,
Andrea Nicolini and
Federico Rossi
Additional contact information
Elena Morini: Engineering Department, Interuniversity Research Centre on Pollution and Environment “Mauro Felli” (CIRIAF), University of Perugia, Via G. Duranti 67, 06125 Perugia, Italy
Beatrice Castellani: Engineering Department, Interuniversity Research Centre on Pollution and Environment “Mauro Felli” (CIRIAF), University of Perugia, Via G. Duranti 67, 06125 Perugia, Italy
Andrea Presciutti: Engineering Department, Interuniversity Research Centre on Pollution and Environment “Mauro Felli” (CIRIAF), University of Perugia, Via G. Duranti 67, 06125 Perugia, Italy
Elisabetta Anderini: Engineering Department, Interuniversity Research Centre on Pollution and Environment “Mauro Felli” (CIRIAF), University of Perugia, Via G. Duranti 67, 06125 Perugia, Italy
Mirko Filipponi: Engineering Department, Interuniversity Research Centre on Pollution and Environment “Mauro Felli” (CIRIAF), University of Perugia, Via G. Duranti 67, 06125 Perugia, Italy
Andrea Nicolini: Engineering Department, Interuniversity Research Centre on Pollution and Environment “Mauro Felli” (CIRIAF), University of Perugia, Via G. Duranti 67, 06125 Perugia, Italy
Federico Rossi: Engineering Department, Interuniversity Research Centre on Pollution and Environment “Mauro Felli” (CIRIAF), University of Perugia, Via G. Duranti 67, 06125 Perugia, Italy
Sustainability, 2017, vol. 9, issue 7, 1-12
Abstract:
Urban Heat Island (UHI) is influenced by urban form, geometry, and the properties of surfaces. Retroreflective (RR) materials have been proposed as a countermeasure to UHI, thanks to their optical property of reflecting most of the incident solar energy back towards the same direction. In this paper, the effect of RR materials on urban districts was investigated. They were applied on building façades of urban districts with different urban forms and orientations. To this aim, an experimental model resembling urban districts with different geometries was built and RR materials on vertical surfaces were tested and compared to conventional construction materials with similar global reflectance. The trend of the instantaneous albedo was monitored during the day and a new parameter called “equivalent albedo” was used to demonstrate the effectiveness of the RR materials. The comparative analysis shows that the RR façades lead to an increase of the equivalent albedo for all of the investigated urban patterns. For a block pattern, the equivalent albedo increase is equal to 3%, while for canyon patterns it is equal to 7%. Results of energy evaluations show that the energy savings obtainable with the use of RR materials is comparable to the values of anthropogenic heat emissions in residential areas.
Keywords: urban heat island; urban district; retroreflective materials; equivalent albedo (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/2071-1050/9/7/1245/pdf (application/pdf)
https://www.mdpi.com/2071-1050/9/7/1245/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:9:y:2017:i:7:p:1245-:d:104872
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().