EconPapers    
Economics at your fingertips  
 

Oscillation of solutions of impulsive neutral difference equations with continuous variable

Gengping Wei and Jianhua Shen

International Journal of Mathematics and Mathematical Sciences, 2006, vol. 2006, 1-7

Abstract:

We obtain sufficient conditions for oscillation of all solutions of the neutral impulsive difference equation with continuous variable Δ τ ( y ( t ) + p ( t ) y ( t − m τ ) ) + Q ( t ) y ( t − l τ ) = 0 , t ≥ t 0 − τ , t ≠t k , y ( t k + τ ) − y ( t k ) = b k y ( t k ) , k ∈ ℕ ( 1 ) , where Δ τ denotes the forward difference operator, that is, Δ τ z ( t ) = z ( t + τ ) − z ( t ) , p ( t ) ∈ C ( [ t 0 − τ , ∞ ) , ℠) , Q ( t ) ∈ C ( [ t 0 − τ , ∞ ) , ( 0 , ∞ ) ) , m , l are positive integers, τ > 0 and b k are constants, 0 ≤ t 0 < t 1 < t 2 < ⋯ < t k < ⋯ with lim k → ∞ t k = ∞ .

Date: 2006
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/IJMMS/2006/034232.pdf (application/pdf)
http://downloads.hindawi.com/journals/IJMMS/2006/034232.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jijmms:034232

DOI: 10.1155/IJMMS/2006/34232

Access Statistics for this article

More articles in International Journal of Mathematics and Mathematical Sciences from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jijmms:034232