On the L P -convergence for multidimensional arrays of random variables
Le Van Thanh
International Journal of Mathematics and Mathematical Sciences, 2005, vol. 2005, 1-4
Abstract:
For a d -dimensional array of random variables { X n , n ∈ ℤ + d } such that { | X n | p , n ∈ ℤ + d } is uniformly integrable for some 0 < p < 2 , the L p -convergence is established for the sums ( 1 / | n | 1 / p ) ( ∑ j ≺ n ( X j − a j ) ) , where a j = 0 if 0 < p < 1 , and a j = E X j if 1 ≤ p < 2 .
Date: 2005
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/IJMMS/2005/267043.pdf (application/pdf)
http://downloads.hindawi.com/journals/IJMMS/2005/267043.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jijmms:267043
DOI: 10.1155/IJMMS.2005.1317
Access Statistics for this article
More articles in International Journal of Mathematics and Mathematical Sciences from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().