Interpolation of natural cubic spline
Arun Kumar and
L. K. Govil
International Journal of Mathematics and Mathematical Sciences, 1992, vol. 15, 1-6
Abstract:
From the result in [1] it follows that there is a unique quadratic spline which bounds the same area as that of the function. The matching of the area for the cubic spline does not follow from the corresponding result proved in [2]. We obtain cubic splines which preserve the area of the function.
Date: 1992
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/IJMMS/15/892642.pdf (application/pdf)
http://downloads.hindawi.com/journals/IJMMS/15/892642.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jijmms:892642
DOI: 10.1155/S0161171292000292
Access Statistics for this article
More articles in International Journal of Mathematics and Mathematical Sciences from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().