EconPapers    
Economics at your fingertips  
 

On the Alexander polynominals of alternating two-component links

Mark E. Kidwell

International Journal of Mathematics and Mathematical Sciences, 1979, vol. 2, 1-9

Abstract:

Let L be an alternating two-component link with Alexander polynomial Δ ( x , y ) . Then the polynomials ( 1 − x ) Δ ( x , y ) and ( 1 − y ) Δ ( x , y ) are alternating. That is, ( 1 − y ) Δ ( x , y ) can be written as ∑ i , j c i j x i y j in such a way that ( − 1 ) i + j c i j ≥ 0 .

Date: 1979
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/IJMMS/2/956230.pdf (application/pdf)
http://downloads.hindawi.com/journals/IJMMS/2/956230.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jijmms:956230

DOI: 10.1155/S0161171279000211

Access Statistics for this article

More articles in International Journal of Mathematics and Mathematical Sciences from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jijmms:956230