EconPapers    
Economics at your fingertips  
 

Dynamical Behavior of the SEIS Infectious Disease Model with White Noise Disturbance

Yuheng Song, Qixing Han and Antonio Di Crescenzo

Journal of Mathematics, 2022, vol. 2022, 1-15

Abstract: Mathematical model plays an important role in understanding the disease dynamics and designing strategies to control the spread of infectious diseases. In this paper, we consider a deterministic SEIS model with a saturation incidence rate and its stochastic version. To begin with, we propose the deterministic SEIS epidemic model with a saturation incidence rate and obtain a basic reproduction number R0. Our investigation shows that the deterministic model has two kinds of equilibria points, that is, disease-free equilibrium E0 and endemic equilibrium E∗. The conditions of asymptotic behaviors are determined by the two threshold parameters R0 and R0c. When R0 1. E∗ is locally asymptotically stable when R0c>R0>1. In addition, we show that the stochastic system exists a unique positive global solution. Conditions d>σˇ2/2 and R0s 1 by constructing appropriate Lyapunov function. Our theoretical finding is supported by numerical simulations. The aim of our analysis is to assist the policy-maker in prevention and control of disease for maximum effectiveness.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/jmath/2022/2747320.pdf (application/pdf)
http://downloads.hindawi.com/journals/jmath/2022/2747320.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jjmath:2747320

DOI: 10.1155/2022/2747320

Access Statistics for this article

More articles in Journal of Mathematics from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jjmath:2747320