EconPapers    
Economics at your fingertips  
 

New Existence and Stability Results for ψ,w-Caputo−Fabrizio Fractional Nonlocal Implicit Problems

Mohammed S. Abdo, Wafa Shammakh, Hadeel Z. Alzumi and Watcharaporn Cholamjiak

Journal of Mathematics, 2023, vol. 2023, 1-11

Abstract: In the context of ψ-weighted Caputo−Fabrizio fractional derivatives, we develop and extend the existence and Ulam−Hyers stability results for nonlocal implicit differential equations. The fixed-point theorems due to Banach and Krasnoselskii are the foundation for the proof of existence and uniqueness results. Additionally, the Ulam−Hyers stability demonstrates the assurance of the existence of solutions via Gronwal inequality. Also, we offer an example as an application to explain and validate the acquired results. Finally, in terms of our outcome, we designate a more general problem for the ψ,w-Caputo−Fabrizio fractional system that includes analogous problems to the problem at hand.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/jmath/2023/6123608.pdf (application/pdf)
http://downloads.hindawi.com/journals/jmath/2023/6123608.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jjmath:6123608

DOI: 10.1155/2023/6123608

Access Statistics for this article

More articles in Journal of Mathematics from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jjmath:6123608