EconPapers    
Economics at your fingertips  
 

On the Edge Resolvability of Double Generalized Petersen Graphs

Tanveer Iqbal, Muhammad Rafiq, Muhammad Naeem Azhar, Muhammad Salman, Imran Khalid and Ali Ahmad

Journal of Mathematics, 2022, vol. 2022, 1-14

Abstract: For a connected graph G=VG,EG, let v∈VG be a vertex and e=uw ∈EG be an edge. The distance between the vertex v and the edge e is given by dGe,v=mindGu,v,dGw,v. A vertex w∈VG distinguishes two edges e1,e2∈EG if dGw,e1≠dGw,e2. A well-known graph invariant related to resolvability of graph edges, namely, the edge resolving set, is studied for a family of 3-regular graphs. A set S of vertices in a connected graph G is an edge metric generator for G if every two edges of G are distinguished by some vertex of S. The smallest cardinality of an edge metric generator for G is called the edge metric dimension and is denoted by βeG. As a main result, we investigate the minimum number of vertices which works as the edge metric generator of double generalized Petersen graphs, DGPn,1. We have proved that βeDGPn,1=4 when n≡0,1,3mod4 and βeDGPn,1=3 when n≡2mod4.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/jmath/2022/6490698.pdf (application/pdf)
http://downloads.hindawi.com/journals/jmath/2022/6490698.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jjmath:6490698

DOI: 10.1155/2022/6490698

Access Statistics for this article

More articles in Journal of Mathematics from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jjmath:6490698