EconPapers    
Economics at your fingertips  
 

Characterization of Fractional Mixed Domination Number of Paths and Cycles

P. Shanthi, S. Amutha, N. Anbazhagan, G. Uma, Gyanendra Prasad Joshi, Woong Cho and Asad Ullah

Journal of Mathematics, 2024, vol. 2024, 1-11

Abstract: Let G′ be a simple, connected, and undirected (UD) graph with the vertex set M(G′) and an edge set N(G′). In this article, we define a function f:M∪N⟶0,1 as a fractional mixed dominating function (FMXDF) if it satisfies fRmx=∑yϵRmxfy≥1 for all x∈MG′∪NG′, where Rmx indicates the closed mixed neighbourhood of x, that is the set of all y∈MG′∪NG′ such that y is adjacent to x and y is incident with x and also x itself. Here, pf=∑x∈M∪Nfx is the poundage (or weight) of f. The fractional mixed domination number (FMXDN) is denoted by γfm∗G′ and is designated as the lowest poundage among all FMXDFs of G′. We compute the FMXDN of some common graphs such as paths, cycles, and star graphs, the middle graph of paths and cycles, and shadow graphs. Furthermore, we compute upper bounds for the sum of the two fractional dominating parameters, resulting in the inequality γf1′Τ+γfm∗Τ≤r+p−radΤ−α, where γf1′ and γfm∗ are the fractional edge domination number and FMXDN, respectively. Finally, we compare γfm∗ to other resolvability-related parameters such as metric and fault-tolerant metric dimensions on some families of graphs.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/jmath/2024/6619654.pdf (application/pdf)
http://downloads.hindawi.com/journals/jmath/2024/6619654.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jjmath:6619654

DOI: 10.1155/2024/6619654

Access Statistics for this article

More articles in Journal of Mathematics from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jjmath:6619654