EconPapers    
Economics at your fingertips  
 

Stable and Holomorphic Implementation of Complex Functions Using a Unit Circle-Based Transform

Binesh Thankappan and Gaetano Luciano

Journal of Mathematics, 2021, vol. 2021, 1-13

Abstract: A stable and holomorphic implementation of complex functions in ℂ plane making use of a unit circle-based transform is presented in this paper. In this method, any complex number or function can be represented as an infinite series sum of progressive products of a base complex unit and its conjugate only, where both are defined inside the unit circle. With each term in the infinite progression lying inside the unit circle, the sum ultimately converges to the complex function under consideration. Since infinitely large number of terms are present in the progression, the first element of which may be deemed as the base unit of the given complex number, it is addressed as complex baselet so that the complex number or function is termed as the complex baselet transform. Using this approach, various fundamental operations applied on the original complex number in ℂ are mapped to equivalent operations on the complex baselet inside the unit circle, and results are presented. This implementation has unique properties due to the fact that the constituent elements are all lying inside the unit circle. Out of numerous applications, two cases are presented: one of a stable implementation of an otherwise unstable system and the second case of functions not satisfying Cauchy–Riemann equations thereby not holomorphic in ℂ plane, which are made complex differentiable using the proposed transform-based implementation. Various lemmas and theorems related to this approach are also included with proofs.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/jmath/2021/7817026.pdf (application/pdf)
http://downloads.hindawi.com/journals/jmath/2021/7817026.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jjmath:7817026

DOI: 10.1155/2021/7817026

Access Statistics for this article

More articles in Journal of Mathematics from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jjmath:7817026