Existence and Stability of a Caputo Variable-Order Boundary Value Problem
Amar Benkerrouche,
Mohammed Said Souid,
Sumit Chandok,
Ali Hakem and
Ming-Sheng Liu
Journal of Mathematics, 2021, vol. 2021, 1-16
Abstract:
In this study, we investigate the existence of a solution to the boundary value problem (BVP) of variable-order Caputo-type fractional differential equation by converting it into an equivalent standard Caputo (BVP) of the fractional constant order with the help of the generalized intervals and the piecewise constant functions. All our results in this study are proved by using Darbo’s fixed-point theorem and the Ulam–Hyers (UH) stability definition. A numerical example is given at the end to support and validate the potentiality of our obtained results.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/jmath/2021/7967880.pdf (application/pdf)
http://downloads.hindawi.com/journals/jmath/2021/7967880.xml (application/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jjmath:7967880
DOI: 10.1155/2021/7967880
Access Statistics for this article
More articles in Journal of Mathematics from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().