EconPapers    
Economics at your fingertips  
 

New Continuity Concepts With Usual, Semi, and Semi-ω-Closure Operators

Kushal Singh and Asha Gupta

Journal of Mathematics, 2025, vol. 2025, 1-10

Abstract: In this paper, we introduce new forms of continuity, namely, weakly θs-continuity, weakly θsω-continuity, almost θs-continuity, and almost θsω-continuity defined via closure operators. These concepts bridge the gap between classical and weak continuity and provide new insights into their relationships. We establish necessary and sufficient conditions under which these forms align with existing notions such as semi-θs-continuity, θsω-continuity, weak continuity, and usual continuity, especially under specific constraints on the domain or codomain space. Our findings highlight both the common ground and the key differences between weakly and almost continuity concepts. To support and illustrate our findings, the study incorporates a wide range of examples and counterexamples, providing a comprehensive understanding of these concepts.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/jmath/2025/8411230.pdf (application/pdf)
http://downloads.hindawi.com/journals/jmath/2025/8411230.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jjmath:8411230

DOI: 10.1155/jom/8411230

Access Statistics for this article

More articles in Journal of Mathematics from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-06-23
Handle: RePEc:hin:jjmath:8411230