Enhancing Traffic Flow Forecasting with Deep-Learning and Noise Reduction Techniques
Jinqiu Zhao,
Le Yu,
Shuhua Wang,
Zhonghao Zhang and
Wei Li
Discrete Dynamics in Nature and Society, 2024, vol. 2024, 1-19
Abstract:
Traditional short-term traffic volume forecasting approaches make it difficult to predict the highly spatiotemporally coupled short-time traffic. To tackle the problem, this paper first proposes a variational modal algorithm (GWO-VMD) based on the optimization of the gray wolf search algorithm. It aims to decompose and reduce the noise of short-time traffic flows. Meanwhile, it reduces the intricacy of data sequences and enhances the regularity pattern. To address the insufficient utilization of spatiotemporal features, this paper presents an innovative deep-learning traffic prediction framework based on the stacking of multiple temporal trend-aware graph attention (TGA) layers and gated temporal convolution (GTC) layers, which are called trend-aware temporal graph neural network (TTGAN). TGA dynamically models the space-time relationships of traffic data, and GTC models the temporal characteristics of traffic data. The experimental findings demonstrate that the MAPE model, as presented, achieves a reduction of 9% and 2% compared to the AGCRN and GWNET models, respectively, in the domain of deep spatiotemporal graph modeling. Data decomposition and noise reduction are necessary to achieve accurate results. This model has superior performance in terms of mean absolute error (MAE), coefficient of determination (R2), and explained variance score (EVAR).
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/ddns/2024/1928189.pdf (application/pdf)
http://downloads.hindawi.com/journals/ddns/2024/1928189.xml (application/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnddns:1928189
DOI: 10.1155/2024/1928189
Access Statistics for this article
More articles in Discrete Dynamics in Nature and Society from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().