EconPapers    
Economics at your fingertips  
 

General Six-Step Discrete-Time Zhang Neural Network for Time-Varying Tensor Absolute Value Equations

Min Sun and Jing Liu

Discrete Dynamics in Nature and Society, 2019, vol. 2019, 1-12

Abstract:

This article presents a general six-step discrete-time Zhang neural network (ZNN) for time-varying tensor absolute value equations. Firstly, based on the Taylor expansion theory, we derive a general Zhang et al. discretization (ZeaD) formula, i.e., a general Taylor-type 1-step-ahead numerical differentiation rule for the first-order derivative approximation, which contains two free parameters. Based on the bilinear transform and the Routh–Hurwitz stability criterion, the effective domain of the two free parameters is analyzed, which can ensure the convergence of the general ZeaD formula. Secondly, based on the general ZeaD formula, we design a general six-step discrete-time ZNN (DTZNN) for time-varying tensor absolute value equations (TVTAVEs), whose steady-state residual error changes in a higher order manner than those presented in the literature. Meanwhile, the feasible region of its step size, which determines its convergence, is also studied. Finally, experiment results corroborate that the general six-step DTZNN model is quite efficient for TVTAVE solving.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/DDNS/2019/4861912.pdf (application/pdf)
http://downloads.hindawi.com/journals/DDNS/2019/4861912.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnddns:4861912

DOI: 10.1155/2019/4861912

Access Statistics for this article

More articles in Discrete Dynamics in Nature and Society from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnddns:4861912