EconPapers    
Economics at your fingertips  
 

Obstacle Detection in Hybrid Cross-Country Environment Based on Markov Random Field for Unmanned Ground Vehicle

Feng Ding, Yibing Zhao, Lie Guo, Mingheng Zhang and Linhui Li

Discrete Dynamics in Nature and Society, 2015, vol. 2015, 1-8

Abstract:

In order to detect the obstacle from the large amount of 3D LIDAR data in hybrid cross-country environment for unmanned ground vehicle, a new graph approach based on Markov random field was presented. Firstly, the preprocessing method based on the maximum blurred line is applied to segment the projection of every laser scan line in x-y plane. Then, based on -means clustering algorithm, the same properties of the line are combined. Secondly, line segment nodes are precisely positioned by using corner detection method, and the next step is to take advantage of line segment nodes to build an undirected graph for Markov random field. Lastly, the energy function is calculated by means of analyzing line segment features and solved by graph cut. Two types of line mark are finally classified into two categories: ground and obstacle. Experiments prove the feasibility of the approach and show that it has better performance and runs in real time.

Date: 2015
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/DDNS/2015/540968.pdf (application/pdf)
http://downloads.hindawi.com/journals/DDNS/2015/540968.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnddns:540968

DOI: 10.1155/2015/540968

Access Statistics for this article

More articles in Discrete Dynamics in Nature and Society from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnddns:540968