Stability of Real Parametric Polynomial Discrete Dynamical Systems
Fermin Franco-Medrano and
Francisco J. Solis
Discrete Dynamics in Nature and Society, 2015, vol. 2015, 1-13
Abstract:
We extend and improve the existing characterization of the dynamics of general quadratic real polynomial maps with coefficients that depend on a single parameter λ and generalize this characterization to cubic real polynomial maps, in a consistent theory that is further generalized to real m th degree real polynomial maps. In essence, we give conditions for the stability of the fixed points of any real polynomial map with real fixed points. In order to do this, we have introduced the concept of canonical polynomial maps which are topologically conjugate to any polynomial map of the same degree with real fixed points. The stability of the fixed points of canonical polynomial maps has been found to depend solely on a special function termed Product Position Function for a given fixed point. The values of this product position determine the stability of the fixed point in question, when it bifurcates and even when chaos arises, as it passes through what we have termed stability bands . The exact boundary values of these stability bands are yet to be calculated for regions of type greater than one for polynomials of degree higher than three.
Date: 2015
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/DDNS/2015/680970.pdf (application/pdf)
http://downloads.hindawi.com/journals/DDNS/2015/680970.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnddns:680970
DOI: 10.1155/2015/680970
Access Statistics for this article
More articles in Discrete Dynamics in Nature and Society from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().