A New Method to Find the Wiener Index of Hypergraphs
Yalan Li and
Bo Deng
Discrete Dynamics in Nature and Society, 2020, vol. 2020, 1-6
Abstract:
The Wiener index is defined as the summation of distances between all pairs of vertices in a graph or in a hypergraph. Both models—graph-theoretical and hypergraph-theoretical—are used in mathematical chemistry for quantitatively studying physical and chemical properties of classical and nonclassical organic compounds. In this paper, we consider relationships between hypertrees and trees and hypercycles and cycles with respect to their Wiener indices.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/DDNS/2020/8138942.pdf (application/pdf)
http://downloads.hindawi.com/journals/DDNS/2020/8138942.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnddns:8138942
DOI: 10.1155/2020/8138942
Access Statistics for this article
More articles in Discrete Dynamics in Nature and Society from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().