Symmetries, variational principles, and quantum dynamics
J. Manjavidze and
A. Sissakian
Discrete Dynamics in Nature and Society, 2004, vol. 2004, 1-8
Abstract:
We describe the role of symmetries in formation of quantum dynamics. A quantum version of d'Alembert's principle is proposed to take into account the symmetry constrains more exact. It is argued that the time reversibility of quantum process, as the quantum analogy of d'Alembert's principle, makes the measure of the corresponding path integral δ -like. The argument of this δ -function is the sum of all classical forces of the problem under consideration plus the random force of quantum excitations. Such measure establishes the one-to-one correspondence with classical mechanics and, for this reason, allows a free choice of the useful dynamical variables. The analysis shows that choosing the action-angle variables, one may get to the free-from-divergences quantum field theory. Moreover, one can try to get an independence from necessity to extract the degrees of freedom constrained by the symmetry. These properties of new quantization scheme are vitally essential for such theories as the non-Abelian Yang-Mills gauge theory and quantum gravity.
Date: 2004
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/DDNS/2004/949021.pdf (application/pdf)
http://downloads.hindawi.com/journals/DDNS/2004/949021.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnddns:949021
DOI: 10.1155/S1026022604310022
Access Statistics for this article
More articles in Discrete Dynamics in Nature and Society from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().