A singular initial value problem for some functional differential equations
Ravi P. Agarwal,
Donal O'Regan and
Oleksandr E. Zernov
International Journal of Stochastic Analysis, 2004, vol. 2004, 1-10
Abstract:
For the initial value problem t r x ′ ( t ) = a t + b 1 x ( t ) + b 2 x ( q 1 t ) + b 3 t r x ′ ( q 2 t ) + φ ( t , x ( t ) , x ( q 1 t ) , x ′ ( t ) , x ′ ( q 2 t ) ) , x ( 0 ) = 0 , where r > 1 , 0 < q i ≤ 1 , i ∈ { 1 , 2 } , we find a nonempty set of continuously differentiable solutions x : ( 0 , ρ ] → ℝ , each of which possesses nice asymptotic properties when t → + 0 .
Date: 2004
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/IJSA/2004/570368.pdf (application/pdf)
http://downloads.hindawi.com/journals/IJSA/2004/570368.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnijsa:570368
DOI: 10.1155/S1048953304405012
Access Statistics for this article
More articles in International Journal of Stochastic Analysis from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().