EconPapers    
Economics at your fingertips  
 

Existence theory for single and multiple solutions to semipositone discrete Dirichlet boundary value problems with singular dependent nonlinearities

Daqing Jiang, Lili Zhang, Donal O'Regan and Ravi P. Agarwal

International Journal of Stochastic Analysis, 2003, vol. 16, 1-13

Abstract:

In this paper we establish the existence of single and multiple solutions to the semipositone discrete Dirichlet boundary value problem { Δ 2 y ( i − 1 ) + μ f ( i , y ( i ) ) = 0 , i ∈ { 1 , 2 , … , T } y ( 0 ) = y ( T + 1 ) = 0 , where μ > 0 is a constant and our nonlinear term f ( i , u ) may be singular at u = 0 .

Date: 2003
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/IJSA/16/691417.pdf (application/pdf)
http://downloads.hindawi.com/journals/IJSA/16/691417.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnijsa:691417

DOI: 10.1155/S1048953303000029

Access Statistics for this article

More articles in International Journal of Stochastic Analysis from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnijsa:691417