EconPapers    
Economics at your fingertips  
 

A Novel Kernel for RBF Based Neural Networks

Wasim Aftab, Muhammad Moinuddin and Muhammad Shafique Shaikh

Abstract and Applied Analysis, 2014, vol. 2014, 1-10

Abstract:

Radial basis function (RBF) is well known to provide excellent performance in function approximation and pattern classification. The conventional RBF uses basis functions which rely on distance measures such as Gaussian kernel of Euclidean distance (ED) between feature vector and neuron’s center, and so forth. In this work, we introduce a novel RBF artificial neural network (ANN) where the basis function utilizes a linear combination of ED based Gaussian kernel and a cosine kernel where the cosine kernel computes the angle between feature and center vectors. Novelty of the proposed work relies on the fact that we have shown that there may be scenarios where the two feature vectors (FV) are more prominently distinguishable via the proposed cosine measure as compared to the conventional ED measure. We discuss adaptive symbol detection for multiple phase shift keying (MPSK) signals as a practical example to show where the angle information can be pivotal which in turn justifies our proposed RBF kernel. To corroborate our theoretical developments, we investigate the performance of the proposed RBF for the problems pertaining to three different domains. Our results show that the proposed RBF outperforms the conventional RBF by a remarkable margin.

Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/AAA/2014/176253.pdf (application/pdf)
http://downloads.hindawi.com/journals/AAA/2014/176253.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlaaa:176253

DOI: 10.1155/2014/176253

Access Statistics for this article

More articles in Abstract and Applied Analysis from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlaaa:176253