Approximate Solutions of Fisher's Type Equations with Variable Coefficients
A. H. Bhrawy and
M. A. Alghamdi
Abstract and Applied Analysis, 2013, vol. 2013, 1-10
Abstract:
The spectral collocation approximations based on Legendre polynomials are used to compute the numerical solution of time-dependent Fisher’s type problems. The spatial derivatives are collocated at a Legendre-Gauss-Lobatto interpolation nodes. The proposed method has the advantage of reducing the problem to a system of ordinary differential equations in time. The four-stage A-stable implicit Runge-Kutta scheme is applied to solve the resulted system of first order in time. Numerical results show that the Legendre-Gauss-Lobatto collocation method is of high accuracy and is efficient for solving the Fisher’s type equations. Also the results demonstrate that the proposed method is powerful algorithm for solving the nonlinear partial differential equations.
Date: 2013
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/AAA/2013/176730.pdf (application/pdf)
http://downloads.hindawi.com/journals/AAA/2013/176730.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlaaa:176730
DOI: 10.1155/2013/176730
Access Statistics for this article
More articles in Abstract and Applied Analysis from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().