A Dynamic Fuzzy Cluster Algorithm for Time Series
Min Ji,
Fuding Xie and
Yu Ping
Abstract and Applied Analysis, 2013, vol. 2013, 1-7
Abstract:
This paper presents an efficient algorithm, called dynamic fuzzy cluster (DFC), for dynamically clustering time series by introducing the definition of key point and improving FCM algorithm. The proposed algorithm works by determining those time series whose class labels are vague and further partitions them into different clusters over time. The main advantage of this approach compared with other existing algorithms is that the property of some time series belonging to different clusters over time can be partially revealed. Results from simulation-based experiments on geographical data demonstrate the excellent performance and the desired results have been obtained. The proposed algorithm can be applied to solve other clustering problems in data mining.
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/AAA/2013/183410.pdf (application/pdf)
http://downloads.hindawi.com/journals/AAA/2013/183410.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlaaa:183410
DOI: 10.1155/2013/183410
Access Statistics for this article
More articles in Abstract and Applied Analysis from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().