Some Interesting Bifurcations of Nonlinear Waves for the Generalized Drinfel’d-Sokolov System
Huixian Cai,
Chaohong Pan and
Zhengrong Liu
Abstract and Applied Analysis, 2014, vol. 2014, 1-20
Abstract:
We study the bifurcations of nonlinear waves for the generalized Drinfel’d-Sokolov system called system. We reveal some interesting bifurcation phenomena as follows. (1) For system, the fractional solitary waves can be bifurcated from the trigonometric periodic waves and the elliptic periodic waves, and the kink waves can be bifurcated from the solitary waves and the singular waves. (2) For system, the compactons can be bifurcated from the solitary waves, and the peakons can be bifurcated from the solitary waves and the singular cusp waves. (3) For system, the solitary waves can be bifurcated from the smooth periodic waves and the singular periodic waves.
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/AAA/2014/189486.pdf (application/pdf)
http://downloads.hindawi.com/journals/AAA/2014/189486.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlaaa:189486
DOI: 10.1155/2014/189486
Access Statistics for this article
More articles in Abstract and Applied Analysis from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().