Numerical Simulation of a One-Dimensional Water-Quality Model in a Stream Using a Saulyev Technique with Quadratic Interpolated Initial-Boundary Conditions
Pawarisa Samalerk and
Nopparat Pochai
Abstract and Applied Analysis, 2018, vol. 2018, 1-7
Abstract:
The one-dimensional advection-diffusion-reaction equation is a mathematical model describing transport and diffusion problems such as pollutants and suspended matter in a stream or canal. If the pollutant concentration at the discharge point is not uniform, then numerical methods and data analysis techniques were introduced. In this research, a numerical simulation of the one-dimensional water-quality model in a stream is proposed. The governing equation is advection-diffusion-reaction equation with nonuniform boundary condition functions. The approximated pollutant concentrations are obtained by a Saulyev finite difference technique. The boundary condition functions due to nonuniform pollutant concentrations at the discharge point are defined by the quadratic interpolation technique. The approximated solutions to the model are verified by a comparison with the analytical solution. The proposed numerical technique worked very well to give dependable and accurate solutions to these kinds of several real-world applications.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/AAA/2018/1926519.pdf (application/pdf)
http://downloads.hindawi.com/journals/AAA/2018/1926519.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlaaa:1926519
DOI: 10.1155/2018/1926519
Access Statistics for this article
More articles in Abstract and Applied Analysis from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().