Economics at your fingertips  

Numerical Simulation of a One-Dimensional Water-Quality Model in a Stream Using a Saulyev Technique with Quadratic Interpolated Initial-Boundary Conditions

Pawarisa Samalerk () and Nopparat Pochai ()

Abstract and Applied Analysis, 2018, vol. 2018, 1-7

Abstract: The one-dimensional advection-diffusion-reaction equation is a mathematical model describing transport and diffusion problems such as pollutants and suspended matter in a stream or canal. If the pollutant concentration at the discharge point is not uniform, then numerical methods and data analysis techniques were introduced. In this research, a numerical simulation of the one-dimensional water-quality model in a stream is proposed. The governing equation is advection-diffusion-reaction equation with nonuniform boundary condition functions. The approximated pollutant concentrations are obtained by a Saulyev finite difference technique. The boundary condition functions due to nonuniform pollutant concentrations at the discharge point are defined by the quadratic interpolation technique. The approximated solutions to the model are verified by a comparison with the analytical solution. The proposed numerical technique worked very well to give dependable and accurate solutions to these kinds of several real-world applications.

Date: 2018
References: Add references at CitEc
Citations: Track citations by RSS feed

Downloads: (external link) (application/pdf) (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

DOI: 10.1155/2018/1926519

Access Statistics for this article

More articles in Abstract and Applied Analysis from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

Page updated 2019-12-28
Handle: RePEc:hin:jnlaaa:1926519