A Hybrid Forecasting Model Based on Bivariate Division and a Backpropagation Artificial Neural Network Optimized by Chaos Particle Swarm Optimization for Day-Ahead Electricity Price
Zhilong Wang,
Feng Liu,
Jie Wu and
Jianzhou Wang
Abstract and Applied Analysis, 2014, vol. 2014, 1-31
Abstract:
In the electricity market, the electricity price plays an inevitable role. Nevertheless, accurate price forecasting, a vital factor affecting both government regulatory agencies and public power companies, remains a huge challenge and a critical problem. Determining how to address the accurate forecasting problem becomes an even more significant task in an era in which electricity is increasingly important. Based on the chaos particle swarm optimization (CPSO), the backpropagation artificial neural network (BPANN), and the idea of bivariate division, this paper proposes a bivariate division BPANN (BD-BPANN) method and the CPSO-BD-BPANN method for forecasting electricity price. The former method creatively transforms the electricity demand and price to be a new variable, named DV, which is calculated using the division principle, to forecast the day-ahead electricity by multiplying the forecasted values of the DVs and forecasted values of the demand. Next, to improve the accuracy of BD-BPANN, chaos particle swarm optimization and BD-BPANN are synthesized to form a novel model, CPSO-BD-BPANN. In this study, CPSO is utilized to optimize the initial parameters of BD-BPANN to make its output more stable than the original model. Finally, two forecasting strategies are proposed regarding different situations.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://downloads.hindawi.com/journals/AAA/2014/249208.pdf (application/pdf)
http://downloads.hindawi.com/journals/AAA/2014/249208.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlaaa:249208
DOI: 10.1155/2014/249208
Access Statistics for this article
More articles in Abstract and Applied Analysis from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().