Univalent Functions in the Möbius Invariant ð ‘„ ð ¾ Space
Fernando Pérez-González and
Jouni Rättyä
Abstract and Applied Analysis, 2011, vol. 2011, 1-11
Abstract:
It is shown that a univalent function ð ‘“ belongs to ð ‘„ ð ¾ if and only if s u p ð ‘Ž ∈ ð ”» ∫ 1 0 ð ‘€ 2 ∞ ( ð ‘Ÿ , ð ‘“ ∘ 𠜑 ð ‘Ž − ð ‘“ ( ð ‘Ž ) ) ð ¾ â€² ( l o g ( 1 / ð ‘Ÿ ) ) ð ‘‘ ð ‘Ÿ < ∞ , where 𠜑 ð ‘Ž ( 𠑧 ) = ( ð ‘Ž − 𠑧 ) / ( 1 − ð ‘Ž 𠑧 ) , provided ð ¾ satisfies certain regularity conditions. It is also shown that under these conditions ð ‘„ ð ¾ contains all univalent Bloch functions if and only if ∫ 1 0 ( l o g ( ( 1 + ð ‘Ÿ ) / ( 1 − ð ‘Ÿ ) ) ) 2 ð ¾ â€² ( l o g ( 1 / ð ‘Ÿ ) ) ð ‘‘ ð ‘Ÿ < ∞ .
Date: 2011
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/AAA/2011/259796.pdf (application/pdf)
http://downloads.hindawi.com/journals/AAA/2011/259796.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlaaa:259796
DOI: 10.1155/2011/259796
Access Statistics for this article
More articles in Abstract and Applied Analysis from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().