EconPapers    
Economics at your fingertips  
 

Hybrid Artificial Neural Networks Modeling for Faults Identification of a Stochastic Multivariate Process

Yuehjen E. Shao and Chia-Ding Hou

Abstract and Applied Analysis, 2013, vol. 2013, 1-10

Abstract:

Due to the recent rapid growth of advanced sensing and production technologies, the monitoring and diagnosis of multivariate process operating performance have drawn increasing interest in process industries. The multivariate statistical process control (MSPC) chart is one of the most commonly used tools for detecting process faults. However, an out-of-control MSPC signal only indicates that process faults have intruded the underlying process. Identifying which of the monitored quality variables is responsible for the MSPC signal is fairly difficult. Pinpointing the responsible variable is vital for process improvement because it effectively determines the root causes of the process faults. Accordingly, this identification has become an important research issue concerning recent multivariate process applications. In contrast with the traditional single classifier approach, the present study proposes hybrid modeling schemes to address problems that involve a large number of quality variables in a multivariate normal process. The proposed scheme includes multivariate adaptive regression splines (MARS), logistic regression (LR), and artificial neural network (ANN). By applying MARS and LR techniques, we may obtain fewer but more significant quality variables, which can serve as inputs to the ANN classifier. The performance of our proposed approaches was evaluated by conducting a series of experiments.

Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/AAA/2013/386757.pdf (application/pdf)
http://downloads.hindawi.com/journals/AAA/2013/386757.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlaaa:386757

DOI: 10.1155/2013/386757

Access Statistics for this article

More articles in Abstract and Applied Analysis from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlaaa:386757