On the Exact Analytical and Numerical Solutions of Nano Boundary-Layer Fluid Flows
Emad H. Aly and
Abdelhalim Ebaid
Abstract and Applied Analysis, 2012, vol. 2012, 1-22
Abstract:
The nonlinear boundary value problem describing the nanoboundary-layer flow with linear Navier boundary condition is investigated theoretically and numerically in this paper. The -expansion method is applied to search for the all possible exact solutions, and its results are then validated by the Chebyshev pseudospectral differentiation matrix (ChPDM) approach which has been recently introduced and successfully used. This numerical technique is firstly applied and, on comparing with the other recent work, it is found that the results are very accurate and effective to deal with the current problem. It is then used to examine and validate the present analytical analysis. Although the -expansion method has been used widely to solve nonlinear wave equations, its application for nonlinear boundary value problems has not been discussed yet, and the present paper may be the first to address this point. It is clarified that the exact solutions obtained via the -expansion method cannot be obtained by using some of the other methods. In addition, the domain of the physical parameters involved in the current boundary value problem is also discussed. Furthermore, the convex, vicinity of zero, and asymptotic solutions are deduced.
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/AAA/2012/415431.pdf (application/pdf)
http://downloads.hindawi.com/journals/AAA/2012/415431.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlaaa:415431
DOI: 10.1155/2012/415431
Access Statistics for this article
More articles in Abstract and Applied Analysis from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().