EconPapers    
Economics at your fingertips  
 

A result on the bifurcation from the principal eigenvalue of the A p -Laplacian

P. Drábek, A. Elkhalil and A. Touzani

Abstract and Applied Analysis, 1997, vol. 2, 1-11

Abstract:

We study the following bifurcation problem in any bounded domain Ω in ℝ N : { A p u : = − ∑ i , j = 1 N ∂ ∂ x i [ ( ∑ m , k = 1 N a m k ( x ) ∂ u ∂ x m ∂ u ∂ x k ) p − 2 2 a i j ( x ) ∂ u ∂ x j ] = λ g ( x ) | u | p − 2 u + f ( x , u , λ ) , u ∈ W 0 1 , p ( Ω ) . . We prove that the principal eigenvalue λ 1 of the eigenvalue problem { A p u = λ g ( x ) | u | p − 2 u , u ∈ W 0 1 , p ( Ω ) , is a bifurcation point of the problem mentioned above.

Date: 1997
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/AAA/2/468501.pdf (application/pdf)
http://downloads.hindawi.com/journals/AAA/2/468501.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlaaa:468501

DOI: 10.1155/S108533759700033X

Access Statistics for this article

More articles in Abstract and Applied Analysis from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlaaa:468501