EconPapers    
Economics at your fingertips  
 

An Intelligence Optimized Rolling Grey Forecasting Model Fitting to Small Economic Dataset

Li Liu, Qianru Wang, Ming Liu and Lian Li

Abstract and Applied Analysis, 2014, vol. 2014, 1-10

Abstract:

Grey system theory has been widely used to forecast the economic data that are often highly nonlinear, irregular, and nonstationary. The size of these economic datasets is often very small. Many models based on grey system theory could be adapted to various economic time series data. However, some of these models did not consider the impact of recent data or the effective model parameters that can improve forecast accuracy. In this paper, we proposed the PRGM(1,1) model, a rolling mechanism based grey model optimized by the particle swarm optimization, in order to improve the forecast accuracy. The experiment shows that PRGM(1,1) gets much better forecast accuracy among other widely used grey models on three actual economic datasets.

Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/AAA/2014/641514.pdf (application/pdf)
http://downloads.hindawi.com/journals/AAA/2014/641514.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlaaa:641514

DOI: 10.1155/2014/641514

Access Statistics for this article

More articles in Abstract and Applied Analysis from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlaaa:641514