EconPapers    
Economics at your fingertips  
 

Hybrid Wind Speed Forecasting Model Study Based on SSA and Intelligent Optimized Algorithm

Wenyu Zhang, Zhongyue Su, Hongli Zhang, Yanru Zhao and Zhiyuan Zhao

Abstract and Applied Analysis, 2014, vol. 2014, 1-14

Abstract:

Accurate wind speed forecasting is important for the reliable and efficient operation of the wind power system. The present study investigated singular spectrum analysis (SSA) with a reduced parameter algorithm in three time series models, the autoregressive integrated moving average (ARIMA) model, the support vector machine (SVM) model, and the artificial neural network (ANN) model, to forecast the wind speed in Shandong province, China. In the proposed model, the weather research and forecasting model (WRF) is first employed as a physical background to provide the elements of weather data. To reduce these noises, SSA is used to develop a self-adapting parameter selection algorithm that is fully data-driven. After optimization, the SSA-based forecasting models are applied to forecasting the immediate short-term wind speed and are adopted at ten wind farms in China. Finally, the performance of the proposed approach is evaluated using observed data according to three error calculation methods. The simulation results from ten cases show that the proposed method has better forecasting performance than the traditional methods.

Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/AAA/2014/693205.pdf (application/pdf)
http://downloads.hindawi.com/journals/AAA/2014/693205.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlaaa:693205

DOI: 10.1155/2014/693205

Access Statistics for this article

More articles in Abstract and Applied Analysis from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlaaa:693205