EconPapers    
Economics at your fingertips  
 

Lyapunov's Type Inequalities for Fourth-Order Differential Equations

Samir H. Saker

Abstract and Applied Analysis, 2012, vol. 2012, 1-25

Abstract:

For a fourth-order differential equation, we will establish some new Lyapunov-type inequalities, which give lower bounds of the distance between zeros of a nontrivial solution and also lower bounds of the distance between zeros of a solution and/or its derivatives. The main results will be proved by making use of Hardy’s inequality and some generalizations of Opial-Wirtinger-type inequalities involving higher-order derivatives. Some examples are considered to illustrate the main results.

Date: 2012
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/AAA/2012/795825.pdf (application/pdf)
http://downloads.hindawi.com/journals/AAA/2012/795825.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlaaa:795825

DOI: 10.1155/2012/795825

Access Statistics for this article

More articles in Abstract and Applied Analysis from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem (mohamed.abdelhakeem@hindawi.com).

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlaaa:795825