Bifurcation Analysis of an SIR Epidemic Model with the Contact Transmission Function
Guihua Li and
Gaofeng Li
Abstract and Applied Analysis, 2014, vol. 2014, 1-7
Abstract:
We consider an SIR endemic model in which the contact transmission function is related to the number of infected population. By theoretical analysis, it is shown that the model exhibits the bistability and undergoes saddle-node bifurcation, the Hopf bifurcation, and the Bogdanov-Takens bifurcation. Furthermore, we find that the threshold value of disease spreading will be increased, when the half-saturation coefficient is more than zero, which means that it is an effective intervention policy adopted for disease spreading. However, when the endemic equilibria exist, we find that the disease can be controlled as long as we let the initial values lie in the certain range by intervention policy. This will provide a theoretical basis for the prevention and control of disease.
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/AAA/2014/930541.pdf (application/pdf)
http://downloads.hindawi.com/journals/AAA/2014/930541.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlaaa:930541
DOI: 10.1155/2014/930541
Access Statistics for this article
More articles in Abstract and Applied Analysis from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().