Economics at your fingertips  

A Study of a Diseased Prey-Predator Model with Refuge in Prey and Harvesting from Predator

Ahmed Sami Abdulghafour () and Raid Kamel Naji ()

Journal of Applied Mathematics, 2018, vol. 2018, 1-17

Abstract: In this paper, a mathematical model of a prey-predator system with infectious disease in the prey population is proposed and studied. It is assumed that there is a constant refuge in prey as a defensive property against predation and harvesting from the predator. The proposed mathematical model is consisting of three first-order nonlinear ordinary differential equations, which describe the interaction among the healthy prey, infected prey, and predator. The existence, uniqueness, and boundedness of the system’ solution are investigated. The system's equilibrium points are calculated with studying their local and global stability. The persistence conditions of the proposed system are established. Finally the obtained analytical results are justified by a numerical simulation.

Date: 2018
References: Add references at CitEc
Citations: Track citations by RSS feed

Downloads: (external link) (application/pdf) (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

DOI: 10.1155/2018/2952791

Access Statistics for this article

More articles in Journal of Applied Mathematics from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

Page updated 2019-12-29
Handle: RePEc:hin:jnljam:2952791