Cesàro Summable Sequence Spaces over the Non-Newtonian Complex Field
Uğur Kadak
Journal of Probability and Statistics, 2016, vol. 2016, 1-10
Abstract:
The spaces , , and can be considered the sets of all sequences that are strongly summable to zero, strongly summable, and bounded, by the Cesà ro method of order with index . Here we define the sets of sequences which are related to strong Cesà ro summability over the non-Newtonian complex field by using two generator functions. Also we determine the -duals of the new spaces and characterize matrix transformations on them into the sets of -bounded, -convergent, and -null sequences of non-Newtonian complex numbers.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/JPS/2016/5862107.pdf (application/pdf)
http://downloads.hindawi.com/journals/JPS/2016/5862107.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnljps:5862107
DOI: 10.1155/2016/5862107
Access Statistics for this article
More articles in Journal of Probability and Statistics from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().