A Novel Entropy-Based Decoding Algorithm for a Generalized High-Order Discrete Hidden Markov Model
Jason Chin-Tiong Chan and
Hong Choon Ong
Journal of Probability and Statistics, 2018, vol. 2018, 1-15
Abstract:
The optimal state sequence of a generalized High-Order Hidden Markov Model (HHMM) is tracked from a given observational sequence using the classical Viterbi algorithm. This classical algorithm is based on maximum likelihood criterion. We introduce an entropy-based Viterbi algorithm for tracking the optimal state sequence of a HHMM. The entropy of a state sequence is a useful quantity, providing a measure of the uncertainty of a HHMM. There will be no uncertainty if there is only one possible optimal state sequence for HHMM. This entropy-based decoding algorithm can be formulated in an extended or a reduction approach. We extend the entropy-based algorithm for computing the optimal state sequence that was developed from a first-order to a generalized HHMM with a single observational sequence. This extended algorithm performs the computation exponentially with respect to the order of HMM. The computational complexity of this extended algorithm is due to the growth of the model parameters. We introduce an efficient entropy-based decoding algorithm that used reduction approach, namely, entropy-based order-transformation forward algorithm (EOTFA) to compute the optimal state sequence of any generalized HHMM. This EOTFA algorithm involves a transformation of a generalized high-order HMM into an equivalent first-order HMM and an entropy-based decoding algorithm is developed based on the equivalent first-order HMM. This algorithm performs the computation based on the observational sequence and it requires calculations, where is the number of states in an equivalent first-order model and is the length of observational sequence.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/JPS/2018/8068196.pdf (application/pdf)
http://downloads.hindawi.com/journals/JPS/2018/8068196.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnljps:8068196
DOI: 10.1155/2018/8068196
Access Statistics for this article
More articles in Journal of Probability and Statistics from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().