EconPapers    
Economics at your fingertips  
 

On the Studies of Dendrimers via Connection-Based Molecular Descriptors

Aqsa Sattar, Muhammad Javaid, Md Nur Alam and A. M. Bastos Pereira

Mathematical Problems in Engineering, 2022, vol. 2022, 1-13

Abstract: Topological indices (TIs) have been utilized widely to characterize and model the chemical structures of various molecular compounds such as dendrimers, neural networks, and nanotubes. Dendrimers are extraordinarily comprehensible, globular, artificially synthesized polymers with a structure of frequently branched units. A mathematical approach to characterize the molecular structures by manipulating the topological techniques, including numerical graphs invariants is the present-day line of research in chemistry. Among all the defined descriptors, the connection-based Zagreb indices are considered to be more effective than the other classical indices. In this manuscript, we find the general results to compute the Zagreb connection indices (ZCIs), namely, first ZCI (1st ZCI), second ZCI (2nd ZCI), modified 1st ZCI, modified 2nd ZCI, and modified 3rd ZCI. Furthermore, we compute the multiplicative ZCI (MZCI), namely, first MZCI (1st MZCI), second MZCI (2nd MZCI), third MZCI (3rd MZCI), fourth MZCI (4th MZCI), modified 1st MZCI, modified 2nd MZCI, and modified 3rd MZCI. In addition, we compare the calculated values with each other in order to check the superiority.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/mpe/2022/1053484.pdf (application/pdf)
http://downloads.hindawi.com/journals/mpe/2022/1053484.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:1053484

DOI: 10.1155/2022/1053484

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:1053484