Improved Chicken Swarm Algorithms Based on Chaos Theory and Its Application in Wind Power Interval Prediction
Bing Wang,
Wei Li,
Xianhui Chen and
Haohao Chen
Mathematical Problems in Engineering, 2019, vol. 2019, 1-10
Abstract:
Probabilistic interval prediction can be used to quantitatively analyse the uncertainty of wind energy. In this paper, a wind power interval prediction model based on chaotic chicken swarm optimization and extreme learning machine (CCSO-ELM) is proposed. Traditional optimization has limitations of low population diversity and a tendency to easily fall into local minima. To address these limitations, chaos theory is adopted in the chicken swarm optimization (CSO), which improves its performance and efficiency. In addition, the traditional cost function does not reflect the deviation degree of off-interval points; hence, an evaluation index considering the relative deviation of off-interval points is proposed in this paper. Finally, the new cost function is taken as the fitness function, the output layer weight of ELM is optimized using CCSO, and the lower upper bound estimation (LUBE) is adopted to output the prediction interval directly. The simulation result shows that the proposed method can effectively reduce the average bandwidth, improve the quality of interval prediction, and guarantee the interval coverage.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2019/1240717.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2019/1240717.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:1240717
DOI: 10.1155/2019/1240717
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().