EconPapers    
Economics at your fingertips  
 

An Improved Nondominated Sorting Genetic Algorithm for Multiobjective Problem

Ruihua Wang

Mathematical Problems in Engineering, 2016, vol. 2016, 1-7

Abstract:

In this paper, an improved NSGA2 algorithm is proposed, which is used to solve the multiobjective problem. For the original NSGA2 algorithm, the paper made one improvement: joining the local search strategy into the NSGA2 algorithm. After each iteration calculation of the NSGA2 algorithm, a kind of local search strategy is performed in the Pareto optimal set to search better solutions, such that the NSGA2 algorithm can gain a better local search ability which is helpful to the optimization process. Finally, the proposed modified NSGA2 algorithm (MNSGA2) is simulated in the two classic multiobjective problems which is called KUR problem and ZDT3 problem. The calculation results show the modified NSGA2 outperforms the original NSGA2, which indicates that the improvement strategy is helpful to improve the algorithm.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2016/1519542.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2016/1519542.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:1519542

DOI: 10.1155/2016/1519542

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:1519542