Deep Q-Network with Predictive State Models in Partially Observable Domains
Danning Yu,
Kun Ni and
Yunlong Liu
Mathematical Problems in Engineering, 2020, vol. 2020, 1-9
Abstract:
While deep reinforcement learning (DRL) has achieved great success in some large domains, most of the related algorithms assume that the state of the underlying system is fully observable. However, many real-world problems are actually partially observable. For systems with continuous observation, most of the related algorithms, e.g., the deep Q-network (DQN) and deep recurrent Q-network (DRQN), use history observations to represent states; however, they often make computation-expensive and ignore the information of actions. Predictive state representations (PSRs) can offer a powerful framework for modelling partially observable dynamical systems with discrete or continuous state space, which represents the latent state using completely observable actions and observations. In this paper, we present a PSR model-based DQN approach which combines the strengths of the PSR model and DQN planning. We use a recurrent network to establish the recurrent PSR model, which can fully learn dynamics of the partially continuous observable environment. Then, the model is used for the state representation and update of DQN, which makes DQN no longer rely on a fixed number of history observations or recurrent neural network (RNN) to represent states in the case of partially observable environments. The strong performance of the proposed approach is demonstrated on a set of robotic control tasks from OpenAI Gym by comparing with the technique with the memory-based DRQN and the state-of-the-art recurrent predictive state policy (RPSP) networks. Source code is available at https://github.com/RPSR-DQN/paper-code.git.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2020/1596385.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2020/1596385.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:1596385
DOI: 10.1155/2020/1596385
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().