EconPapers    
Economics at your fingertips  
 

Application of the Multitype Strauss Point Model for Characterizing the Spatial Distribution of Landslides

Iswar Das and Alfred Stein

Mathematical Problems in Engineering, 2016, vol. 2016, 1-12

Abstract:

Landslides are common but complex natural hazards. They occur on the Earth’s surface following a mass movement process. This study applies the multitype Strauss point process model to analyze the spatial distributions of small and large landslides along with geoenvironmental covariates. It addresses landslides as a set of irregularly distributed point-type locations within a spatial region. Their intensity and spatial interactions are analyzed by means of the distance correlation functions, model fitting, and simulation. We use as a dataset the landslide occurrences for 28 years from a landslide prone road corridor in the Indian Himalayas. The landslides are investigated for their spatial character, that is, whether they show inhibition or occur as a regular or a clustered point pattern, and for their interaction with landslides in the neighbourhood. Results show that the covariates lithology, land cover, road buffer, drainage density, and terrain units significantly improved model fitting. A comparison of the output made with logistic regression model output showed a superior prediction performance for the multitype Strauss model. We compared results of this model with the multitype/hard core Strauss point process model that further improved the modeling. Results from the study can be used to generate landslide susceptibility scenarios. The paper concludes that a multitype Strauss point process model enriches the set of statistical tools that can comprehensively analyze landslide data.

Date: 2016
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2016/1612901.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2016/1612901.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:1612901

DOI: 10.1155/2016/1612901

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:1612901