Wind Tunnel Tests on Aerodynamic Characteristics of Ice-Coated 4-Bundled Conductors
Li Xin-min,
Nie Xiao-chun,
Zhu Yong-kun,
You Yi and
Yan Zhi-tao
Mathematical Problems in Engineering, 2017, vol. 2017, 1-11
Abstract:
Wind tunnel tests were carried out to obtain the static aerodynamic characteristics of crescent iced 4-bundled conductors with different ice thicknesses, initial ice accretion angles, bundle spaces, and wind attack angles. The test models were made of the actual conductors and have a real rough surface. Test results show that the influence of wake interference on the drag coefficients of leeward subconductors is obvious. The interference angle range is larger than 20° and the drag coefficient curves of leeward subconductors have a sudden decrease phenomenon at some certain wind attack angles. The absolute value of the lift and moment coefficient increases with the increase of the ice thickness. In addition, the galloping of the iced subconductor may occur at the angle of wind attack near ±20° and the wake increases the moment coefficient. The variation of initial ice accretion angle has a significant influence on the aerodynamic coefficients. The aerodynamic coefficient curves exhibit a “moving” phenomenon at different initial ice accretion angles. The bundle spaces have a great influence on the moment coefficient of leeward thin ice-coated conductors. With the increase of ice thickness, the bundle spaces generally have little influence on the aerodynamic coefficients.
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2017/1628173.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2017/1628173.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:1628173
DOI: 10.1155/2017/1628173
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().