EconPapers    
Economics at your fingertips  
 

Temperature Distribution Measurement Using the Gaussian Process Regression Method

Huaiping Mu, Zhihong Li, Xueyao Wang and Shi Liu

Mathematical Problems in Engineering, 2017, vol. 2017, 1-12

Abstract:

The temperature distribution in real-world industrial environments is often in a three-dimensional space, and developing a reliable method to predict such volumetric information is beneficial for the combustion diagnosis, the understandings of the complicated physical and chemical mechanisms behind the combustion process, the increase of the system efficiency, and the reduction of the pollutant emission. In accordance with the machine learning theory, in this paper, a new methodology is proposed to predict three-dimensional temperature distribution from the limited number of the scattered measurement data. The proposed prediction method includes two key phases. In the first phase, traditional technologies are employed to measure the scattered temperature data in a large-scale three-dimensional area. In the second phase, the Gaussian process regression method, with obvious superiorities, including satisfactory generalization ability, high robustness, and low computational complexity, is developed to predict three-dimensional temperature distributions. Numerical simulations and experimental results from a real-world three-dimensional combustion process indicate that the proposed prediction method is effective and robust, holds a good adaptability to cope with complicated, nonlinear, and high-dimensional problems, and can accurately predict three-dimensional temperature distributions under a relatively low sampling ratio. As a result, a practicable and effective method is introduced for three-dimensional temperature distribution.

Date: 2017
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2017/2147935.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2017/2147935.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:2147935

DOI: 10.1155/2017/2147935

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:2147935