EconPapers    
Economics at your fingertips  
 

Parallel Machine Scheduling with Batch Delivery to Two Customers

Xueling Zhong and Dakui Jiang

Mathematical Problems in Engineering, 2015, vol. 2015, 1-6

Abstract:

In some make-to-order supply chains, the manufacturer needs to process and deliver products for customers at different locations. To coordinate production and distribution operations at the detailed scheduling level, we study a parallel machine scheduling model with batch delivery to two customers by vehicle routing method. In this model, the supply chain consists of a processing facility with parallel machines and two customers. A set of jobs containing jobs from customer 1 and jobs from customer 2 are first processed in the processing facility and then delivered to the customers directly without intermediate inventory. The problem is to find a joint schedule of production and distribution such that the tradeoff between maximum arrival time of the jobs and total distribution cost is minimized. The distribution cost of a delivery shipment consists of a fixed charge and a variable cost proportional to the total distance of the route taken by the shipment. We provide polynomial time heuristics with worst-case performance analysis for the problem. If and , we propose a heuristic with worst-case ratio bound of 3/2, where is the capacity of the delivery shipment. Otherwise, the worst-case ratio bound of the heuristic we propose is .

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2015/247356.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2015/247356.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:247356

DOI: 10.1155/2015/247356

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:247356